Environmental Product Declaration

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019/AC:2021 for:

Interpon D2000 Powder Coatings

from

Akzo Nobel Powder Coatings Ltd

Programme: The International EPD® System, www.environdec.com

Programme operator: EPD International AB

EPD registration number: S-P-09129
Publication date: 2023-05-23

Revision date: 2024-03-25 (Version 1.1)

Valid until: 2028-05-23

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

General information

Programme information

Programme:	The International EPD® System					
	EPD International AB					
A delroco.	Box 210 60					
Address:	SE-100 31 Stockholm					
	Sweden					
Website:	www.environdec.com					
E-mail: info@environdec.com						

Accountabilities for PCR, LCA and independent, third-party verification

Product Category Rules (PCR)

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)

Product Category Rules (PCR): *PCR* 2019:14 Construction products, version 1.2.5 and UN CPC 35110 - Paints and varnishes and related products.

PCR review was conducted by: The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact.

Life Cycle Assessment (LCA)

LCA accountability: Anna Liljenroth, IVL Swedish Environmental Research Institute

Third-party verification

Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:

⋈ EPD verification by individual verifier

Third-party verifier: Daniel Böckin, Miljögiraff AB

Approved by: The International EPD® System

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but registered in different EPD programmes, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

1. The company

Owner of the EPD: Akzo Nobel Powder Coatings Ltd

Contact: info.interpon@akzonobel.com

Description of the organisation:

Since 1792, we've been supplying the innovative paints and coatings that help to color people's lives and protect what matters most. Our world class portfolio of brands – including International, Sikkens and Interpon – is trusted by customers around the globe. We're active in more than 150 countries and use our expertise to sustain and enhance the fabric of everyday life. Because we believe every surface is an opportunity. It's what you'd expect from a pioneering and long-established paints company that's dedicated to providing sustainable solutions and preserving the best of what we have today – while creating an even better tomorrow.

We are a leader in the manufacture and development of powder coatings, sold under our Interpon and Resicoat brands, with a reputation for innovating products that combine color and style with durability and performance. Supporting general trade coaters and customers across the automotive, architectural, industrial and functional sectors with powder coatings, we at AkzoNobel have made it our business to deliver the sustainable and innovative solutions that our customers, communities – and the planet – are increasingly relying on.

Powder coatings are solvent-free, primarily applied to metal and other conductive surfaces. It comes as a solid material in a box. It is applied to the substrate by either electrostatic spray or fluid bed dipping. After application it is then cured at elevated temperatures (as suggested in relevant product datasheets). AkzoNobel's powder coatings contain no Volatile Organic Compounds (VOC) and no harmful substances. Continuous innovation has led to an evolution in important parameters like ease of application, quality of finish and cost efficiency. Any powder overspray can be recovered to provide maximum utilization.

For more information please visit www.akzonobel.com © 2023 Akzo Nobel N.V. All rights reserved.

2. The product and the process

Interpon D, Interpon's dedicated architectural series, is the stand-out performer for architects, fabricators and system houses looking to bring their creations to life and leave a lasting legacy to inspire future generations. This means providing range of on-trend colours, finishes, special effects from high gloss to ultra-matt and from metallics to stone effects. We supply products with different levels of durability to deliver appropriate environmental and quality performance. Interpon D protects and enhances the parts of a building.

Application areas:

- Façade, cladding, curtain walls
- •Window frames and doors
- Verandas and conservatories
- Frameworks and structures
- ·Louvres and shutters, ceiling tiles
- ·Metal fencing and railings, pergolas and garden structures

The Interpon D architectural powder coatings series comes with different durability levels.

- Interpon D1000: Standard durable powder coatings
- Interpon D2000: Superdurable powder coatings
- Interpon D3000: Hyperdurable powder coatings

The Interpon D1000, D2000 and D3000 powder coatings are produced in:

- · Nashville and Reading, USA
- Izmir, Turkey
- Como, Italy
- Dourdan, France
- Bao An, Changzhou and LangFang, China
- Dong Nai, Vietnam
- Sunshine, Australia
- Thane, India

Since this covers selected sites all over the world, the geographical scope of the study is Global. The results are based on a weighted average, depending on volume and location.

The state-of-the-art technology used for producing industrial powder coatings consists of several distinct stages, namely:

- •Weighing, premixing and size reduction of raw materials
- •Extrusion of pre-mix, cooling and crushing of the extrudate into chips
- •Micronising the chips into the final powder
- ·Post mixing, packaging and storage

The products are usually packed in a carton box with a plastic liner. The weight of the product in one box is up to 25 kg.

Additionally, the following processes are included in the use phase:

Coating of the substrate and curing.

All of the AkzoNobel Powder Coatings manufacturing sites are fulfilling the ISO 14001:2015.

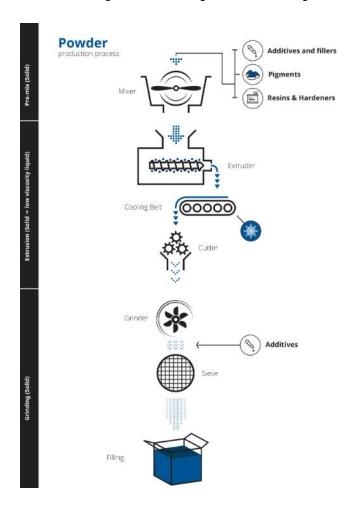


Figure 2.1. Production process of powder coatings

3. Interpon D2000 products

Product name: Interpon D2000 series

Scope of EPD:

This EPD covers the full range of products from the Interpon D2000 product series. This EPD is therefore valid for product range with a full palette of colours and finishes. The environmental impact results are based on the formulations of the following products: dark grey and black texture, white matt. These formulations represent well the full portfolio of products that are part of the Interpon D2000 product range.

The environmental impact results in this EPD are based on the white matt, the product with the highest environmental impact. The colours dark grey texture and black texture are included in the scope and their environmental impact is lower than the presented values.

Product Description:

Interpon D2000 superdurable series of powder coatings are specifically formulated for requiring a long lifespan with the recommended cleaning schedule. The new 'benchmark' in durability for architectural applications are powder coatings that are superdurable. Our superdurable series created to withstand demanding climates and designed to protect and beautify architectural exterior aluminum applications such as window and door systems, louvres, balustrades and other exterior metal features on commercial buildings. Superdurable powder coatings deliver better colour and gloss retention capabilities than 'standard' durability coatings, as well as even greater resistance to damage caused through humidity and corrosion. Along with hyperdurable products, they are taking the art of what's possible to new levels.

These powder coatings meet the requirements of global level standards such as AAMA2604, EN12206, EN13438 and specific series having licenses with Qualicoat Class-2 and GSB.

Highlights:

- An extensive range of on-trend colours in gloss and matt finish with superb colour retention
- Service life of the product: This product provides up to a 25-year project warranty when applied by an Interpon D approved applicator when used on an architectural aluminium substrate, subject to warranty terms and conditions.

Technical and safety information: Please refer to www.interpon.com
For information on Green Building Standard contribution, see "Additional Information" on page 20.

UN CPC code: 35110 - Paints and varnishes and related products

Geographical scope: Global

4. LCA information

Declared unit: 1 kg of Interpon D2000 applied to the aluminium surface.

<u>Technical lifetime:</u> The technical lifetime of the product is estimated at between 20 and 25 years depending on geographical location the building. Please contact your Interpon regional representative for more information.

Time representativeness: 2021

<u>Database(s)</u> and <u>LCA software used:</u> Gabi software is used for the modelling, together with Sphera 2022.1 database and ecoinvent 3.8 database

<u>Description of system boundaries:</u> Cradle to gate with options, modules C1-C4, module D and with optional modules A4 and A5

System diagram:

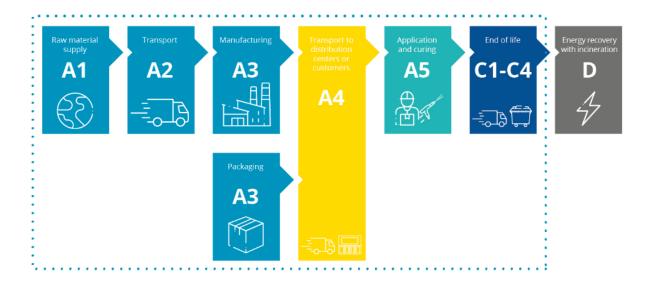


Figure 4.1. Life cycle steps included according to EN15804+A2

Pro	duct ge		tion	rocess						Use stage						Reso urce recov ery stage
Raw material	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction, demolition	Transport	Waste processing	Disposal	Reuse, recycling or energy recovery potentials
A1	A2	A3	A 4	A5	18	B2	B3	B4	B5	B6	87	Ŋ	2	3	2	۵
X	X	X	Х	X	M N D	M N D	M N D	M N D	M N D	M N D	M N D	X	Х	Х	X	Х

The table illustrates the different life cycle stages according to the PCR. If a stage is included, it is indicated with an "X" and if it is not included "MND" (Module Not Declared) is noted.

Data quality:

Site-specific production data have been retrieved for year 2021. For raw materials and energy, generic data has been used according to the suggested sources in the PCR. Most data used in the study is collected within the last few years. No data is older than 10 years.

Infrastructure:

Infrastructure is excluded in the EPD.

Allocation:

Powder coating production yields no commercial by-products. Thus, there is no need for allocation in this specific process.

Production waste (A3):

The production waste is sent for waste treatment divided into the following categories: incineration (39%), reuse (59%) and landfill (2%).

Installation (A5):

To give a more complete picture of the life cycle of the powder coating, the installation of the product is partly included, even though it is not mandatory. The pre-treatment of the aluminium substrate is excluded, but the energy intensive process of coating the substrate and cure it in high temperatures is

included in module A5. The electricity and heat represent the global conditions, meaning that a global average according to statistics from IEA is used for the electricity mix.

In this step the packaging is also incinerated, without the energy being recovered.(Global assumption)

Deconstruction/demolition (C1):

After the end of the product's useful life, the product enters the deconstruction/demolition stage before being sent to waste treatment. In the case of Interpon coating, the powder coating cannot be separated from the aluminium substrate on which it is applied and therefore the impact from this module is zero.

Transport to waste management (C2):

A transport of 150 km by a 28-tonne truck is assumed.

Waste processing (C3):

The coating is incinerated with energy recovery. The emissions are calculated based on the carbon content of the powder coating and approximated with a dataset with similar impact.

Waste disposal (C4):

This module is also zero since no waste is sent for disposal.

Indicators according to EN15804+A2:

Indicator	Unit	Method
Global warming potential total, GWP - total	kg CO₂ eq.	IPCC baseline, 100 years, 2013
Global warming potential fossil, GWP – fossil	kg CO₂ eq.	IPCC baseline, 100 years, 2013
Global warming potential biogenic, GWP – biogenic	kg CO₂ eq.	IPCC baseline, 100 years, 2013
Global warming potential land use and land use change, GWP – LULUC	kg CO₂ eq.	IPCC baseline, 100 years, 2013
Indicator for climate impact, GWP - GHG	kg CO₂ eq.	Excluding biogenic carbon dioxide emissions and uptakes, and biogenic carbon stored in the product. Version AR5
Depletion potential of the stratospheric ozone layer, ODP	kg CFC-11 eq.	Steady-state ODPs, WMO 2014
Acidification potential, Accumulated Exceedance, AP	Mol H+ eq.	Accumulated Exceedance, Seppälä et al. 2006, Posch et al., 2008
Eutrophication potential, fraction of nutrients reaching freshwater end compartment, EP-freshwater	kg P eq.	EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe
Eutrophication potential, fraction of nutrients reaching freshwater end compartment, EP - marine	kg N eq.	EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe
Eutrophication potential, Accumulated Exceedance, EP-terrestrial	mol N eq.	Accumulated Exceedance, Seppälä et al. 2006, Posch et al. 2008
Formation potential of tropospheric ozone, POCP	kg NMVOC eq.	LOTOS-EUROS ,Van Zelm et al., 2008, as applied in ReCiPe
Abiotic depletion potential for non-fossil resources, ADP- minerals & metals	kg Sb eq.	CML 2002, Guinée et al., 2002, and van
Abiotic depletion potential for fossil resources, ADP-fossil fuels	MJ, net calorific value	CML 2002, Guinée et al., 2002, and van
Water (user) deprivation potential, deprivation weighted water consumption, WDP	m³ world eq. deprived	Available WAter REmaining (AWARE), Boulay et al., 2016

Optional indicators:

Indicator	Unit	Method
Particulate matter emissions, PM	Disease incidences	SETAC-UNEP, Fantke et al. 2016
lonizing radiation, human health, IRP	kBq U235 eq	Human health effect model as developed by Dreicer et al. 1995 update by Frischknecht et al., 2000
Eco-toxicity (freshwater), ETP-fw	CTUe	Usetox version 2 until the modified USEtox model is available from EC-JRC
Human toxicity, cancer effects, HTP-c	CTUh	Usetox version 2 until the modified USEtox model is available from EC-JRC
Human toxicity, non-cancer effects, HTP-nc	CTUh	Usetox version 2 until the modified USEtox model is available from EC-JRC
Land use related impacts/ Soil quality, SQP	Dimensionless	Soil quality index based on LANCA

In addition, inventory factors are required according to the International EPD system programme instructions and the specific PCR used.

Inventory – Energy & Material & Water	Unit
Use of renewable primary energy excluding renewable primary energy resources used as raw materials, PERE	MJ, net calorific value
Use of renewable primary energy resources used as raw materials, PERM	MJ, net calorific value
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials), PERT	MJ, net calorific value
Use of non- renewable primary energy excluding non- renewable primary energy resources used as raw materials, PENRE	MJ, net calorific value
Use of non- renewable primary energy resources used as raw materials, PENRM	MJ, net calorific value
Total use of non- renewable primary energy resources (primary energy and primary energy resources used as raw materials), PENRT	MJ, net calorific value
Use of renewable secondary fuels, RSF	MJ, net calorific value
Use of non-renewable secondary fuels, NRSF	MJ, net calorific value
Use of secondary material, SM	kg
Use of net fresh water, FW	m³

Inventory – Waste	Unit
Hazardous waste disposed, HWD	kg
Non-hazardous waste disposed, NHWD	kg
Radioactive waste disposed, RWD	kg

Modules declared, geographical scope, share of specific data (in GWP-GHG results) and data variation (in GWP-GHG results):

	Pro	duct sta	age	prod	ruction cess age			Us	se sta	ge			En	ıd of li	Resource recovery stage		
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	nse	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A 1	A2	А3	A4	A5	В1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Modules declared	Х	Х	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	Х	Х	Х	Х	Х
Geography	GLO	GLO	GLO	GLO	GLO	-	-	-	-	-	-	-	GLO	GLO	GLO	GLO	GLO
Specific data used		9%		-	-	ı	-	-	1	ı	ı	ı	-	ı	-	-	-
Variation – products		58%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites		>10%		-	-	-	-	-	-	-	-	-	-	-	-	-	-

5. Content information

Product components	Weight,kg	Post-consumer material, weight%	Biogenic material, weight% and kg C/kg
Binder (resin + hardener)	Confidential	0	0
Pigments	Confidential	0	0
Additives	Confidential	0	0
Filler	Confidential	0	0
TOTAL	1	0	0
Packaging materials	Weight, kg	Weight-% (versus the product)	Weight biogenic carbon, kg C/kg
Card-board box	0.7	70	0.40
Plastic liner	0.1	10	0
TOTAL	0.8	80	0.28

Products within the scope of EPD (D2000 series) do not contain, to the best of our knowledge substances marked as REACH-SVHC at >0.1% w/w.

6. Results

Mandatory environmental impacts

ENVIRONMENTAL		Product stage	t Construction End of life process stage stage						
IMPACTS Declared unit: 1 kg	Unit	A1-A3	A4 Transport	A5 Installation	C1 Deconstruction	C2 Transport	C3 Waste processing	C4 Disposal	D
GWP-GHG ¹	kg CO₂ eq.	3.35E+00	2.34E-02	4.56E+00	0.00E+00	8.82E-03	1.26E+00	0.00E+00	-2.08E-01
GWP-total	kg CO₂ eq.	3.42E+00	2.37E-02	4.61E+00	0.00E+00	8.93E-03	1.26E+00	0.00E+00	-2.08E-01
GWP-fossil	kg CO₂ eq.	3.40E+00	2.34E-02	4.55E+00	0.00E+00	8.80E-03	1.26E+00	0.00E+00	-2.07E-01
GWP-biogenic	kg CO₂ eq.	-3.78E-02	7.68E-05	5.95E-02	0.00E+00	2.89E-05	2.13E-04	0.00E+00	-1.26E-03
GWP-luluc	kg CO₂ eq.	5.89E-02	2.50E-04	4.66E-04	0.00E+00	9.39E-05	1.72E-05	0.00E+00	-3.53E-05
ODP	kg CFC 11 eq.	2.02E-07	3.82E-18	1.90E-11	0.00E+00	1.44E-18	2.09E-13	0.00E+00	-1.60E-12
AP	mol H+ eq.	2.91E-02	2.66E-05	5.65E-03	0.00E+00	9.73E-06	6.57E-04	0.00E+00	-3.78E-04
EP-freshwater	kg P eq.	6.75E-04	1.72E-07	4.32E-06	0.00E+00	6.45E-08	1.19E-07	0.00E+00	-9.91E-05
EP-marine	kg N eq.	2.68E-03	7.73E-06	1.67E-03	0.00E+00	2.78E-06	2.56E-04	0.00E+00	-1.07E-03
EP-terrestrial	mol N eq.	2.43E-02	1.04E-04	1.82E-02	0.00E+00	3.75E-05	2.92E-03	0.00E+00	-2.71E-04
POCP	kg NMVOC eq.	1.07E-02	1.97E-05	4.68E-03	0.00E+00	7.14E-06	6.68E-04	0.00E+00	-3.21E-08
ADP – minerals and metals*	kg Sb eq.	1.26E-05	2.25E-09	4.76E-07	0.00E+00	8.46E-10	5.16E-09	0.00E+00	- 2.77E+00

¹ This indicator accounts for all greenhouse gases except biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. As such, the indicator is identical to GWP-total except that the CF for biogenic CO₂ is set to zero.

ADP – fossil*	MJ	6.89E+01	3.00E-01	6.55E+01	0.00E+00	1.13E-01	5.80E-01	0.00E+00	-1.77E-02
WDP*	m³	2.16E+00	3.31E-04	2.23E-01	0.00E+00	1.24E-04	1.58E-01	0.00E+00	-3.31E-09

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Division of total climate impact between modules A1-A5

Life cycle stage	GWP total (kg CO ₂ eq.)
A1 - Raw material supply	3.36
A2 - Transport	4.06x10 ⁻²
A3 - Manufacturing	2.35x10 ⁻²
A4 – Transport to warehouse	2.37x10 ⁻²
A5 - Installation	4.61

Voluntary environmental impacts

ENVIRONMENTAL	Unit	Product stage		ruction ss stage	End of life stage					
IMPACTS Declared unit: 1 kg		A1-A3	A4 Transport	A5 Installation	C1 Deconstruction	C2 Transport	C3 Waste processing	C4 Disposal	D	
PM	Disease incidences	1.32E-07	1.73E-10	4.88E-08	0.00E+00	6.39E-11	4.48E-09	0.00E+00	-1.54E-02	
IRP*	kBq U235 eq	2.43E-01	6.61E-05	1.85E-01	0.00E+00	2.49E-05	4.03E-03	0.00E+00	-7.98E-01	
ETP-fw**	CTUe	8.00E+01	2.16E-01	9.75E+00	0.00E+00	8.11E-02	3.27E-01	0.00E+00	-3.58E-11	
HTP-c**	CTUh	5.35E-09	5.01E-12	6.75E-10	0.00E+00	1.88E-12	2.33E-11	0.00E+00	-9.77E-10	
HTTP-nc**	CTUh	1.17E-07	3.40E-10	2.21E-08	0.00E+00	1.28E-10	2.15E-09	0.00E+00	-4.16E-01	
SQP**	Dimensionless	2.06E+01	2.32E-01	5.02E+00	0.00E+00	8.73E-02	1.49E-01	0.00E+00	-1.01E+00	

^{*}Disclaimer: This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

^{**} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Use of resources

USE OF RESOURCES Declared unit: 1 kg	Unit	Product stage	duct stage Construction process stage		End of life stage				
		A1-A3	A4 Transport	A5 Construction installation	C1 Deconstruction	C2 Transport	C3 Waste processing	C4 Disposal	D
PERE	MJ	6.83E+00	3.15E-02	1.21E+01	0.00E+00	1.19E-02	1.24E-01	0.00E+00	-1.01E+00
PERM	МЈ	4.76E-01	0.00E+00	4.76E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	6.83E+00	3.15E-02	1.21E+01	0.00E+00	1.19E-02	1.24E-01	0.00E+00	-1.01E+00
PENRE	MJ	6.90E+01	3.00E-01	6.55E+01	0.00E+00	1.13E-01	5.80E-01	0.00E+00	-2.77E+00
PENRM	MJ	2.15E+01	0.00E+00	-1.28E-01	0.00E+00	0.00E+00	-2.14E+01	0.00E+00	0.00E+00
PENRT	МЈ	6.90E+01	3.00E-01	6.55E+01	0.00E+00	1.13E-01	5.80E-01	0.00E+00	-2.77E+00
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m3	5.56E-02	4.05E-05	5.99E-03	0.00E+00	1.52E-05	3.73E-03	0.00E+00	-4.71E-04

Waste

WASTE		Product stage		truction ess stage	End of life stage				
Declared unit: 1 kg	Unit	A1-A3	A4 Transport	A5 Construction installation	C1 Deconstruction	C2 Transport	C3 Waste processing	C4 Disposal	D
Hazardous waste disposed	kg	3.67E-09	1.56E-11	8.29E-09	0.00E+00	5.87E-12	5.74E-11	0.00E+00	-1.97E-10
Non-hazardous waste disposed	kg	1.78E-02	6.88E-05	2.41E-02	0.00E+00	2.59E-05	1.72E-01	0.00E+00	-1.18E-03
Radioactive waste disposed	kg	3.70E-04	4.51E-07	2.00E-03	0.00E+00	1.70E-07	2.60E-05	0.00E+00	-1.67E-04

Output flows

OUTPUT FLOWS Declared unit: 1 kg		Product Construction stage process stage		End of life stage					
	Unit	A1-A3	A4 Transport	A5 Construction installation	C1 Deconstruction	C2 Transport	C3 Waste processing	C4 Disposal	D
Components for re-use	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Material for recycling	kg	3.48E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E+00	0.00E+00
Exported energy, electricity	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported energy, thermal	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

7. Additional environmental information

CONTRIBUTION TO GREEN BUILDINGS CERTIFICATION

The declared product contributes to some of the leading Green Building Standard credits including the categories 'Materials' (BREEAM) and 'Materials and Resources' (LEED), being recognized as construction products with independently verified Environmental Product Declarations. With a selection of certain colours from our large colour palette, we can help building designers obtain credits for heat island reduction under LEED green building scheme.

If you have any questions regarding green building certifications, please reach out to us.

CONTACT US

Speak to your local representative or contact and learn more about what Interpon D can do for you: info.interpon@akzonobel.com

https://architectural.interpon.com/en/

https://architectural.interpon.com/en/sustainability

GWP INFORMATION PER YEAR

Product series	Technical lifetime	GWP per year (A+C)
Interpon D1000	Up to 15 years	0.61
Interpon D2000	Up to 25 years	0.37
Interpon D3000	Up to 30 years	0.47

Based on the different technical lifetimes of the three product series, above calculation of GWP per year is performed by dividing the GWP (for modules A and C) by the technical lifetime of each product series. This is an indication for global warming potential over time. For specific building projects and solutions, please contact us.

Differences versus previous versions

2023-05-23 Version 1 2024-03-25 Version 1.1

Editorial change: Boiler plate in description of the organization.

References

- General Programme Instructions of the International EPD® System. Version 4.0.
- EN 15804:2012+A2:2019. Sustainability of construction works Environmental product declarations – Core rules for the product category of construction products. CEN European Committee for Standardisation (2019).
- PCR 2019:14. Construction products. version 1.2.5 (2022-11-01)
- LCA Methodology Report for EPD of Interpon D (Liljenroth, A., Borisova, S. & Johansson, K)
 (2023)

